

# FIFA LABORATORY TEST REPORT

TM Football Turf | 2015 01.01.2015

Product

Pasto sintético tipo deportivo Qgrass 50mm \*04mt \*20mt

| Test Institute       | Sports Labs Ltd. |
|----------------------|------------------|
| Test Number          | 127857           |
| External Test Number | 13142/8277       |
| Date of Test         | 30.03.2023       |
| Test Result          | Passed           |
| Quality Level        | FIFA Quality     |
| Test Type            | Initial          |



#### Test institute

Main Address

| Name          | Sports Labs Ltd.                            |
|---------------|---------------------------------------------|
| Address       | 1 Adam Square<br>Brucefield Industrial Park |
| ZIP / City    | EH54 9DE / LIVINGSTON                       |
| Website       | www.sportslabs.co.uk                        |
| Contact Email | info@sportslabs.co.uk                       |
| Contact Phone | +44/1506 44 755                             |





#### Approval

| Test Institute Director | Sean Ramsay - Associate Director   |
|-------------------------|------------------------------------|
| Signature               | Same                               |
| Date                    | 30.03.2023                         |
|                         |                                    |
| Test Institute Engineer | Craig Melrose - Laboratory Manager |
| Signature               | C. Mehose                          |
| Date                    | 30.03.2023                         |
|                         |                                    |



#### 1 – Test Results

|                                         | Commont             |
|-----------------------------------------|---------------------|
| Name                                    | Comment Result      |
| 1 - Summary                             |                     |
| Vertical ball rebound FIFA              | Passed              |
| Quality                                 |                     |
| Angle ball rebound FIFA                 | Passed              |
| Quality                                 |                     |
| Reduced ball roll FIFA                  | Passed              |
| Quality                                 |                     |
| Shock absorption FIFA                   | Passed              |
| Quality                                 |                     |
| Deformation FIFA Quality                | Passed              |
| Rotational resistance FIFA              | Passed              |
| Quality                                 |                     |
| Skin / surface friction                 | Passed              |
| Skin abrasion                           | Passed              |
| 1 - Test Details   Object               |                     |
| Product Name                            | Bellin-             |
|                                         | DiamondD650130      |
| Product ID                              | -                   |
| Synthetic Turf System                   | Bellin-             |
|                                         | DiamondD650130      |
| Performance infill                      | SBR                 |
| Stabilising infill                      | Sand                |
| Shock-pad or elastic layer              |                     |
| Sub-base composition                    | Rigid engineered    |
|                                         | base                |
| 2 - Test Details   Test Institute       |                     |
| Date(s) of test                         | 30.03.2023          |
| Report created by                       | E Steyn             |
| Laboratory Test report                  | 13142/8277          |
| number                                  |                     |
| Test Institute Project                  | 13142               |
| number                                  |                     |
| 3 – Product Declaration (Manufac        |                     |
|                                         | BELLINTURF          |
| Manufacturer                            | INDUSTRIAL          |
|                                         | (VIETNAM)CO.,LTD    |
| T. if is attained                       | <b>C t</b>          |
| Tuft pattern                            | Straight            |
| Yarn manufacturer   yarn                | Consan              |
| 1                                       |                     |
| Product name, code   yarn               | Consan Diamond      |
| 1                                       | GFD2000, Consan     |
| Detailed tuft desites:                  | Diamond GLE2000     |
| Detailed tuft decitex                   | 2000 x 3 + 2000 x 3 |
| (Dtex) [g/10000m]                       |                     |
| Pile yarn profile   yarn 1              | Diamond             |
| Pile thickness (µ m)   yarn             | 260.0               |
| 1<br>Pile colour (PAL) hyplus 1 h       |                     |
| Pile colour (RAL)   value 1  <br>yarn 1 | 6010                |
|                                         |                     |



| Name                        | Comment  | Result  |
|-----------------------------|----------|---------|
| Pile colour (RAL)   value 2 |          |         |
| yarn 1                      |          | 6025    |
| Pile colour (RAL)   value 3 |          |         |
| yarn 1                      |          | -       |
| Pile width (mm)   yarn 1    |          | 1.50    |
| Number of tufts/m2   yarn   |          | 1.50    |
|                             | ISO1773  | 8190.00 |
| Pile length (mm)   yarn 1   | ISO 2549 | 50.00   |
| Pile weight (g/m2)   yarn 1 | ISO 8543 | 1160.00 |
| Pile varn characterization  | 130 8343 | 1100.00 |
| yarn 1                      |          | PE      |
| Pile yarn dtex   yarn 1     |          | 12000   |
| Yarn manufacturer   yarn    |          | 12000   |
|                             |          |         |
| Product name, code   yarn   |          |         |
| 2                           |          |         |
| Pile yarn profile   yarn 2  |          |         |
| Pile thickness (µ m)   yarn |          |         |
| 2                           |          |         |
| Pile colour (RAL)   value 1 |          |         |
| yarn 2                      |          |         |
| Pile colour (RAL)   value 2 |          |         |
| yarn 2                      |          |         |
| Pile colour (RAL)   value 3 |          |         |
| yarn 2                      | Dub      |         |
| Pile width (mm)   yarn 2    |          |         |
| Number of tufts/m2   yarn   |          |         |
|                             | ISO1773  |         |
| Pile length (mm)   yarn 2   | ISO 2549 |         |
| Pile weight (g/m2)   yarn 2 | ISO 8543 |         |
| Pile varn characterization  |          |         |
| yarn 2                      |          |         |
| Pile yarn dtex   yarn 2     |          |         |
| Yarn manufacturer   yarn    |          |         |
| 3                           |          |         |
| Product name, code   yarn   |          |         |
|                             |          |         |
| Pile yarn profile   yarn 3  |          |         |
| Pile thickness (µ m)   yarn |          |         |
| 3                           |          |         |
| Pile colour (RAL)   value 1 |          |         |
| yarn 3                      |          |         |
| Pile colour (RAL)   value 2 |          |         |
| yarn 3                      |          |         |
| Pile colour (RAL)   value 3 |          |         |
| yarn 3                      |          |         |
| Pile width (mm)   yarn 3    |          |         |
| Number of tufts/m2   yarn   | 1001772  |         |
| 3                           | ISO1773  |         |
| Pile length (mm)   yarn 3   | ISO 2549 |         |
| Pile weight (g/m2)   yarn 3 | ISO 8543 |         |
| Pile yarn characterization  |          |         |
| yarn 3                      |          |         |
|                             | •        |         |



| Name                                    | Comment       | Result              |
|-----------------------------------------|---------------|---------------------|
| Pile yarn dtex   yarn 3                 | comment       | Result              |
| Primary backing   Product               |               |                     |
| name, code                              |               | Double PP cloth     |
| Primary backing                         |               | Jinda Fabric Co.,   |
| Manufacturer                            |               | Ltd., Yizheng       |
| Re-enforcement scrim                    |               |                     |
| Product name, code                      |               | Mesh fabric         |
| Re-enforcement scrim                    |               | Sweet Fabric Co.,   |
| Manufacturer                            |               | Ltd.                |
| Secondary backing                       |               |                     |
| Product name, code                      |               | SBR Latex           |
| Secondary backing                       |               |                     |
| Manufacturer                            |               | TRINSEO             |
| Secondary backing   Dry                 |               |                     |
| application rate (g/m2)                 |               | 1200.0              |
| Carpet   Minimum tuft                   |               |                     |
| withdrawal force (N)                    |               | 40                  |
| Carpet   Carpet mass per                |               |                     |
| unit area [g/m2]                        |               | 2605.0              |
| Method of jointing                      |               | Bonded              |
| Bonded joints   Adhesive                |               |                     |
| brand name                              |               | Mapei               |
|                                         |               | Mapei               |
|                                         |               | construction        |
| Bonded joints   Ad <mark>hesi</mark> ve | Duch          | materials (         |
| manufacturer                            |               | Guangzhou ) co .,   |
|                                         |               |                     |
| Bonded joints                           |               | 400                 |
| Application rate (g/m)                  | 7             | 400g/lm             |
| Bonded joints   Jointing                |               |                     |
| film brand name                         |               | Fule                |
| Bonded joints   Jointing                |               | Fule adhesive Co ., |
| film manufacturer                       |               | LTD                 |
| Stitched seams   Tread                  |               |                     |
| brand name/product code                 |               |                     |
| Stitched seams   Tread                  |               |                     |
| manufacturer                            |               |                     |
| Stitched seams   Stitch rate            |               |                     |
| (stitch per lm)                         |               |                     |
| Performance Infill                      |               | SBR                 |
| Product name, code                      |               | אסכ                 |
| Performance Infill                      |               | Various             |
| Manufacturer                            |               | various             |
| Performance Infill                      |               | 0.8 - 2.5 mm        |
| Material grading                        |               | 0.0 - 2.3 11111     |
| Performance Infill                      | prEN 14955    | Angular             |
| Particle shape                          |               |                     |
| Performance Infill                      | EN 933-Part 1 | 0.8 - 2.5 mm        |
| Particle size range                     |               | 0.0 - 2.3 11111     |
| Performance Infill   Bulk               | EN 1097-3     | 0.441               |
| density (g/cm3)                         |               | 0.441               |
| Performance Infill                      |               | 16.0                |
| Application rate (kg/m2)                |               | 10.0                |



| Name                                               | Comment              | Result       |
|----------------------------------------------------|----------------------|--------------|
| Stabilising Infill   Product                       | Comment              | Result       |
| name, code                                         |                      | Silica sand  |
| Stabilising Infill                                 |                      |              |
| Manufacturer                                       |                      | Various      |
| Stabilising Infill   Material                      |                      |              |
| type                                               |                      | Silica sand  |
| Stabilising Infill   Material                      |                      |              |
| grading                                            |                      | 0.5 - 1.0 mm |
| Stabilising Infill   Particle                      |                      |              |
| shape                                              | prEN 14955           | Rounded      |
| Stabilising Infill   Particle                      |                      |              |
| size range                                         | EN 933-Part 1        | 0.5 - 1.0 mm |
| Stabilising Infill   Bulk                          |                      |              |
| density (g/cm3)                                    | EN 1097-3            | 1.49         |
| Stabilising Infill                                 |                      |              |
| Application rate (kg/m2)                           |                      | 7.0          |
| Shockpad, E-layer                                  |                      |              |
| Product name, code                                 |                      |              |
| Shockpad, E-layer                                  |                      |              |
| Manufacturer                                       |                      |              |
| Shockpad, E-layer                                  |                      |              |
| Composition                                        |                      |              |
| Shockpad, E-layer   Bulk                           |                      |              |
| density (g/cm3)                                    |                      |              |
| Shockpad, E-layer                                  | EN 1969              |              |
| Thickness                                          | EN 1909              |              |
| Shockpad, E-layer   <mark>Sho</mark> ck            | FIFA 4a              |              |
| absorption (%)                                     |                      |              |
| Shockpad, E-layer                                  | FIFA 5a              |              |
| Deformation                                        |                      |              |
| Shockpad, E-layer   Tensile                        |                      |              |
| strength (MPa)                                     |                      |              |
| Shockpad, E-layer   Mass                           |                      |              |
| per unit area (kg/m2)                              |                      |              |
| Other, detail                                      |                      |              |
| 3 – Test Results   Player / Surface                | Interaction          |              |
| Rotational Resistance                              | 27 - 48 Nm           | 38           |
| Initial   Dry (Quality)                            |                      |              |
| Rotational Resistance  <br>Initial   Wet (Quality) | 27 - 48 Nm           | 35           |
| Rotational Resistance                              |                      |              |
| after simulated wear                               | 27 - 48 Nm           | 39           |
| 6'000 cycles (5*)                                  | 21 - 40 NIII         |              |
| Rotational Resistance                              |                      |              |
| after simulated wear                               | 27 - 48 Nm           |              |
| 6'000 cycles (20*)                                 |                      |              |
| 3 – Test Results   Product identifie               | cation field product | I            |
| Performance infill                                 |                      |              |
| Theremographic analysis                            |                      |              |
| Organic [%] - Product                              |                      | 35.0         |
| Declaration                                        |                      |              |
| Performance infill                                 |                      | 65.0         |
| Theremographic analysis                            |                      | 65.0         |
|                                                    |                      | ı            |



| Name                                | Comment    | Result              |
|-------------------------------------|------------|---------------------|
| Inorganic [%] - Product             |            | Result              |
| Declaration                         |            |                     |
| Performance infill                  |            |                     |
| Theremographic analysis             |            |                     |
| Elastomer [%] - Product             |            | 62.0                |
| Declaration                         |            |                     |
| 4 – Product Identification          |            |                     |
| Artificial Turf   Carpet            |            |                     |
| mass per unit area [g/m2]           |            | 2713                |
| Artificial Turf   Tufts per         |            |                     |
| unit area [m2]                      |            | 8173                |
| Artificial Turf   Pile lenght       |            |                     |
| above backing [mm]                  |            | 50.0                |
| Artificial Turf   Pile weight       |            |                     |
| [g/m2]                              |            | 1127                |
| Detailed tuft decitex               |            |                     |
| (Dtex) [g/10000m]                   |            | 2049 x 3 + 2056 x 3 |
| Artificial Turf   Water             |            |                     |
| permeability of carpet              |            | 1571                |
| [mm/h]                              |            | 1571                |
| Artificial Turf   Free pile         |            |                     |
| height                              |            | 15                  |
| Performance infill                  |            |                     |
| Particle size range [mm]            |            | 0.8 - 2.5 mm        |
| Performance infill                  |            |                     |
| Particle shape                      |            | A2                  |
| Performance infill   Bulk           |            |                     |
| density [g/cm3]                     |            | 0.442               |
| Performance infill   Infill         |            |                     |
| depth [mm]                          |            | 30                  |
| Performance infill                  |            |                     |
| Thermographic analysis              |            | 65                  |
| organic [%]                         |            | 05                  |
| Performance infill                  |            |                     |
| Theremographic analysis             |            | 35                  |
| inorganic [%]                       |            | 55                  |
| Stabilising infill   Particle       |            |                     |
| size range [mm]                     |            | 0.5 - 1.0 mm        |
| Stabilising infill   Particle       |            |                     |
| shape                               |            | C2                  |
| Stabilising infill   Bulk           |            |                     |
| density [g/cm3]                     |            | 1.53                |
|                                     | if part of |                     |
| Shock pad / E-layer   Shock         | supplied   |                     |
| absorption [%]                      | system     |                     |
|                                     | if part of |                     |
| Shock pad / E-layer                 | supplied   |                     |
| Deformation                         | system     |                     |
|                                     | if part of |                     |
| Shock pad / E-layer                 | supplied   |                     |
| Thickness                           | system     |                     |
| Other, detail                       |            |                     |
| 5 – Test Results   Ball / Surface i | nteraction |                     |
| - isticourto pari / surrace i       |            |                     |

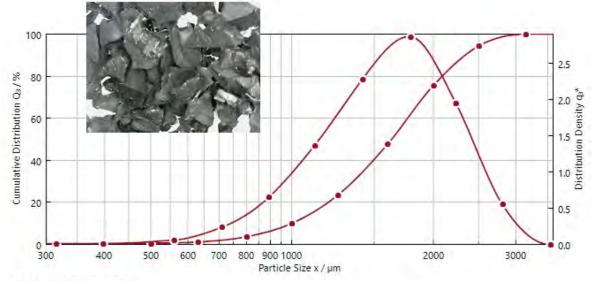


| Name                                | Comment       | Result |
|-------------------------------------|---------------|--------|
| Vertical Ball Rebound               | Comment       | Result |
| •                                   | 0.6 - 1m      | 0.94   |
| Initial Dry (Quality)               |               |        |
| Vertical Ball Rebound               | 0.6 - 1m      | 0.85   |
| Initial   Wet (Quality)             |               |        |
| Vertical Ball Rebound               |               |        |
| after simulated wear                | 0.6 - 1m      | 1.00   |
| 6'000 cycles (5*)                   |               |        |
| Vertical Ball Rebound               |               |        |
| after simulated wear                | 0.6 - 1m      |        |
| 6'000 cycles (20*)                  |               |        |
| Angle Ball Rebound   Dry            | 45 - 70 %     | 56     |
| Angle Ball Rebound   Wet            | 45 - 80 %     | 65     |
| Reduced Ball Roll   Initial         |               |        |
| Dry (Quality)                       | 4 - 10 m      | 7.9    |
| Reduced Ball Roll   after           |               |        |
| simulated wear   6'000              | 4 - 12 m      | 8.7    |
| cycles (5*)   Dry                   |               |        |
| Reduced Ball Roll   after           |               |        |
| simulated wear   6'000              | 4 - 12 m      | 8.9    |
| cycles (5*)   Wet                   | 4 - 12 III    | 0.5    |
|                                     |               |        |
| Reduced Ball Roll   after           | 4 12          |        |
| simulated wear   6'000              | 4 - 12 m      |        |
| cycles (20*)  Dry                   |               |        |
| Reduced Ball Roll   after           |               |        |
| simulated wear   6'000              | 4 - 12 m      |        |
| cycles (20*)  Wet                   |               |        |
| Shock absorption   Initial          | 57 - 68 %     | 63.1   |
| Dry (Quality)                       | 37 00 /0      | 03.1   |
| Shock absorption   Initial          | 57 - 68 %     | 61.0   |
| Wet (Quality)                       | 57 - 08 70    | 01.0   |
| Shock absorption   after            |               |        |
| simulated wear   6'000              | 57 - 68 %     | 58.0   |
| cycles (5*)                         |               |        |
| Shock absorption   after            |               |        |
| simulated wear   6'000              | 57 - 68 %     |        |
| cycles (20*)                        |               |        |
| Shock absorption   50°C             | 57 - 68 %     | 64.30  |
| Shock absorption   -5°C             | 57 - 68 %     | 62.60  |
| Other, detail                       |               |        |
| 5 – Test Results   Player / Surface | interaction   |        |
| Deformation   Initial   Dry         |               |        |
| (Quality)                           | 4 - 11 mm     | 9.2    |
| Deformation   Initial   Wet         |               |        |
| (Quality)                           | 4 - 11 mm     | 8.6    |
|                                     |               |        |
| Deformation   after                 | 4 - 11 mm     | 7.0    |
| simulated wear   6'000              | 4 - 11 11111  | 7.9    |
| cycles (5*)                         |               |        |
| Deformation   after                 | 4 11          |        |
| simulated wear   6'000              | 4 - 11 mm     |        |
| cycles (20*)                        |               |        |
| Skin / surface friction   Dry       | 0.35 - 0.75 μ | 0.72   |
| Skin / surface friction   Dry       | 0.35 - 0.75 µ |        |
| 3'000 cycles                        | M             |        |



| Name                                           | Comment             | Result |
|------------------------------------------------|---------------------|--------|
| Skin / surface friction   Dry                  |                     |        |
| 6'000 cycles                                   | 0.35 - 0.75 μ       | 0.62   |
| Skin abrasion   Dry                            | ± 30 %              | 23     |
| Skin abrasion   Dry   3'000                    |                     |        |
| cycles                                         | ± 30 %              |        |
| Skin abrasion   Dry   6'000                    |                     |        |
| cycles                                         | ± 30 %              | 20     |
| 6 – Environmental impact (arficia              | l light water)      |        |
| Pile yarn 1   Colour change                    |                     |        |
| after artificial                               | ≥ Grey scale 3      | 4 - 5  |
| weathering                                     | 2 Grey scale 5      | 4-5    |
| Pile yarn 2   Colour change                    |                     |        |
| after artificial                               | ≥ Grey scale 3      | 5      |
| weathering                                     | 2 drey scale 3      |        |
| Pile yarn 3   Colour change                    |                     |        |
| after artificial                               |                     |        |
| weathering                                     | $\geq$ Grey scale 3 |        |
|                                                |                     |        |
| Pile yarn 1   Peak                             |                     | 16.40  |
| Breakage Force   before                        |                     | 16.40  |
| artificial weathering                          |                     |        |
| Pile yarn 1   Peak                             |                     | 12.0   |
| Breakage Force   after                         |                     | 12.9   |
| artificial weathering                          |                     |        |
| Pile yarn 1   Peak                             |                     |        |
| Breakage Force   Green                         |                     | 16.90  |
| Reference value before                         |                     |        |
| artificial weathering                          |                     |        |
| Pile yarn 1   Peak                             | Champion 25         |        |
| Breakage Force   Variation                     | Change $\leq 25$    | 23.70  |
| after weathering from<br>Green Reference value | %                   |        |
|                                                |                     |        |
| Pile yarn 2   Peak                             |                     | 16.00  |
| Breakage Force   before                        |                     | 16.90  |
| artificial weathering                          |                     |        |
| Pile yarn 2   Peak                             |                     | 12.0   |
| Breakage Force   after                         |                     | 12.8   |
| artificial weathering                          |                     |        |
| Pile yarn 2  Peak Breakage                     |                     |        |
| Force   Green Reference                        |                     | 16.90  |
| value before artificial                        |                     |        |
| weathering                                     |                     |        |
| Pile yarn 2   Peak                             | Change - 25         |        |
| Breakage Force   Variation                     | Change $\leq 25$    | 24.30  |
| after weathering from                          | %                   |        |
| Green Reference value                          |                     |        |
| Pile yarn 3   Peak                             |                     |        |
| Breakage Force   before                        |                     |        |
| artificial weathering                          |                     |        |
| Pile yarn 3   Peak                             |                     |        |
| Breakage Force   after                         |                     |        |
| artificial weathering                          |                     |        |
| Pile yarn 3  Peak Breakage                     |                     |        |
| Force   Green Reference                        |                     |        |

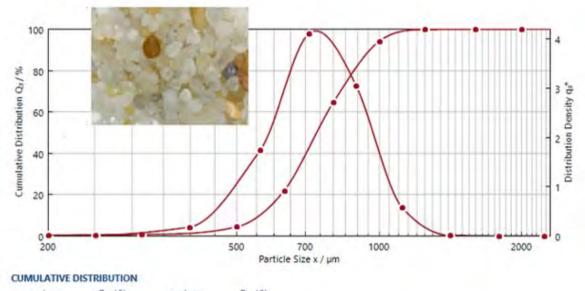



| Name                               | Comment                  | Result              |
|------------------------------------|--------------------------|---------------------|
| value before artificial            |                          |                     |
| weathering                         |                          |                     |
| Pile yarn 3   Peak                 |                          |                     |
| Breakage Force   Variation         | Change ≤ 25              |                     |
| after weathering from              | %                        |                     |
| Green Reference value              |                          |                     |
| Polymeric infill   Colour          |                          |                     |
| change   after artificial          | ≥ Grey scale 3           | 4 - 5               |
| weathering                         |                          |                     |
| Polymeric infill   Visual          |                          |                     |
| change in composition              | No change                | No change           |
| after artificial weathering        |                          |                     |
| Complete system   Water            | > 180 mm/h               | 955                 |
| permeability                       | > 180 mm/n               | 900                 |
| Stitched joints   Strength         | 2                        |                     |
| un-aged                            | 1000N/100mm              |                     |
| Stitched joints   Strength         | 2                        |                     |
| water aged                         | 1000N/100mm              |                     |
| Bonded joints   Strength           |                          |                     |
| un-aged                            | ≥ 75/100mm               | 113                 |
| Bonded joints   Strength           |                          |                     |
| water aged                         | ≥ 75/100mm               | 110                 |
| Carpet tuft   Withdrawal           |                          |                     |
| force   un-aged                    | ≥ 40N                    | 72                  |
| Carpet tuft   Withdrawal           |                          |                     |
| force   water aged                 | ≥ 40N                    | 59                  |
|                                    | for                      |                     |
| Heat   Category                    | information              | Category 2 - 3      |
| 7 - Miscellaneous (shock pad, sub  |                          | stem)               |
| Shock Pad / E-layer                | buse - In part of the sy |                     |
| tensile strength   un-aged         | ≥ 0.15 MPa               |                     |
| Sub-base   Composition             |                          |                     |
| Sub-base   Particle size           |                          |                     |
|                                    |                          |                     |
| range<br>Sub-base   Particle shape |                          |                     |
| · · ·                              |                          |                     |
| Sub-base   Thickness               |                          |                     |
| Sub-base   Compaction &            |                          |                     |
| test method                        |                          |                     |
|                                    |                          | Joint results taken |
|                                    |                          | from FIFA Test      |
|                                    |                          | Number 126493       |
| Other, detail                      |                          | (External Test      |
|                                    |                          | Number              |
|                                    |                          | 12599/6840 dated    |
|                                    |                          | 19.12.2022.         |
| Turf   Product Report Details      | 1                        | 1                   |
| Shockpad, E-layer   Type           |                          | No Shockpad         |
| Category                           |                          | ·                   |
| Performance Infill                 |                          | End of Life Tires   |
| Material type Category             |                          | Infill (ELT)        |
| Splash   Characteristics           |                          | ≥ 1.5%              |
| Category                           |                          | ≤ 1.J/0             |







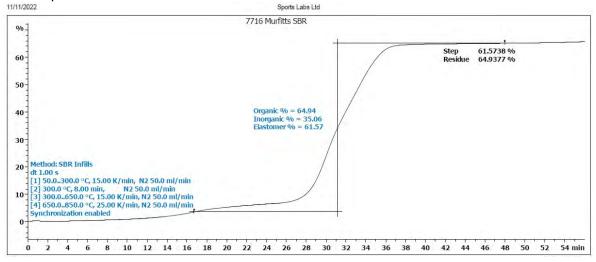

## 2 – Test Images Performance infill particle grading curve



#### CUMULATIVE DISTRIBUTION

| 0.01 | A REAL PROPERTY OF THE REAL PR |                                                                          |                                                                                                         |                                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                                                                                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.01 | 800.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.72                                                                     | 13.17                                                                                                   | 0.000                                                                                                                                     | 709.93                                                                                                                                                                  | 0.240                                                                                                                                                                                                           |
| 0.13 | 1000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.07                                                                    | 34.25                                                                                                   | 0.002                                                                                                                                     | 894.43                                                                                                                                                                  | 0.655                                                                                                                                                                                                           |
| 0.26 | 1250.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.32                                                                    | 79.37                                                                                                   | 0.006                                                                                                                                     | 1118.03                                                                                                                                                                 | 1.367                                                                                                                                                                                                           |
| 0.31 | 1600.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.78                                                                    | 122.47                                                                                                  | 0.003                                                                                                                                     | 1414.21                                                                                                                                                                 | 2.282                                                                                                                                                                                                           |
| 0.34 | 2000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75.57                                                                    | 173.21                                                                                                  | 0.002                                                                                                                                     | 1788.85                                                                                                                                                                 | 2.867                                                                                                                                                                                                           |
| 0.38 | 2500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.43                                                                    | 251.00                                                                                                  | 0.002                                                                                                                                     | 2236.07                                                                                                                                                                 | 1.946                                                                                                                                                                                                           |
| 0.61 | 3150.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00                                                                   | 396.86                                                                                                  | 0.011                                                                                                                                     | 2806.24                                                                                                                                                                 | 0.555                                                                                                                                                                                                           |
| 1,22 | 4000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00                                                                   | 561.25                                                                                                  | 0.061                                                                                                                                     | 3549.65                                                                                                                                                                 | 0.000                                                                                                                                                                                                           |
|      | 0.26<br>0.31<br>0.34<br>0.38<br>0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26 1250.00   0.31 1600.00   0.34 2000.00   0.38 2500.00   0.61 3150.00 | 0.26 1250.00 23.32   0.31 1600.00 47.78   0.34 2000.00 75.57   0.38 2500.00 94.43   0.61 3150.00 100.00 | 0.26 1250.00 23.32 79.37   0.31 1600.00 47.78 122.47   0.34 2000.00 75.57 173.21   0.38 2500.00 94.43 251.00   0.61 3150.00 100.00 396.86 | 0.26 1250.00 23.32 79.37 0.006   0.31 1600.00 47.78 122.47 0.003   0.34 2000.00 75.57 173.21 0.002   0.38 2500.00 94.43 251.00 0.002   0.61 3150.00 100.00 396.86 0.011 | 0.26 1250.00 23.32 79.37 0.006 1118.03   0.31 1600.00 47.78 122.47 0.003 1414.21   0.34 2000.00 75.57 173.21 0.002 1788.85   0.38 2500.00 94.43 251.00 0.002 2236.07   0.61 3150.00 100.00 396.86 0.011 2806.24 |

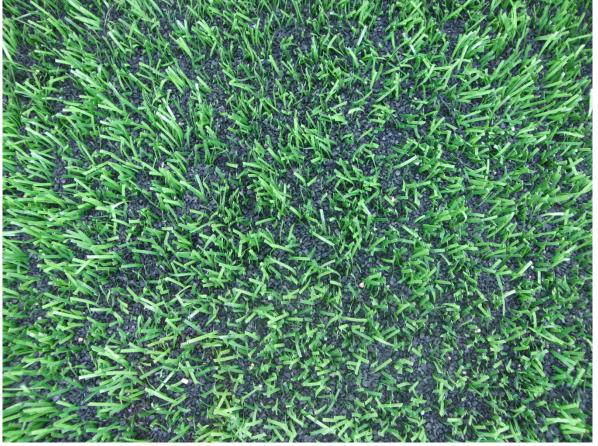


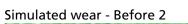



#### Stabilising infill particle grading curve

| x <sub>o</sub> / µm | Q3/% | x <sub>o</sub> / µm | Q3/%   |        |       |         |       |
|---------------------|------|---------------------|--------|--------|-------|---------|-------|
| 18.62               | 0.01 | 630.00              | 21.98  | 13.17  | 0.000 | 561.25  | 1.749 |
| 63.00               | 0.11 | 800.00              | 64.59  | 34.25  | 0.002 | 709.93  | 4.107 |
| 100.00              | 0.28 | 1000.00             | 94.18  | 79.37  | 0.008 | 894.43  | 3.054 |
| 150.00              | 0.39 | 1250.00             | 99.84  | 122.47 | 0.007 | 1118.03 | 0.584 |
| 200.00              | 0.48 | 1600.00             | 99.97  | 173.21 | 0.007 | 1414.21 | 0.012 |
| 315.00              | 0.81 | 2000.00             | 100.00 | 251.00 | 0.017 | 1788.85 | 0.003 |
| 500.00              | 4.42 | 2500.00             | 100.00 | 396.86 | 0.180 | 2236.07 | 0.000 |




#### TGA of performance infill








Simulated wear - Before 1



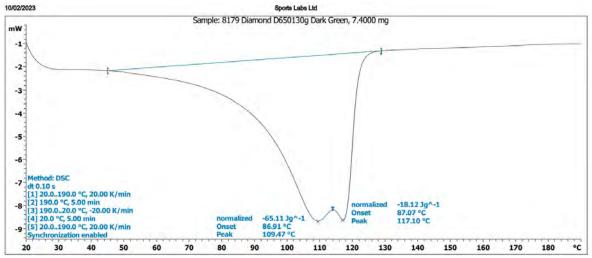






Simulated wear - After 1

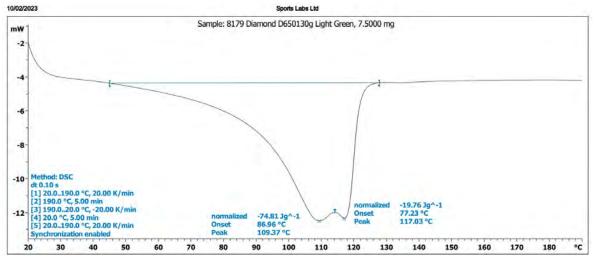





Simulated wear - After 2






Yarn Characteristics DSC







#### Yarn Characteristics DSC - 2

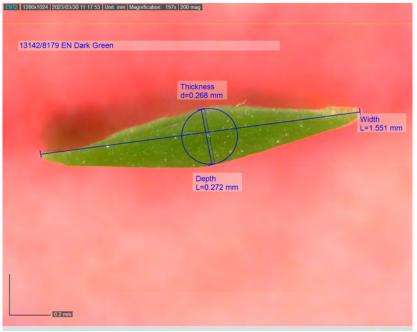






Stabilising Infill - picture

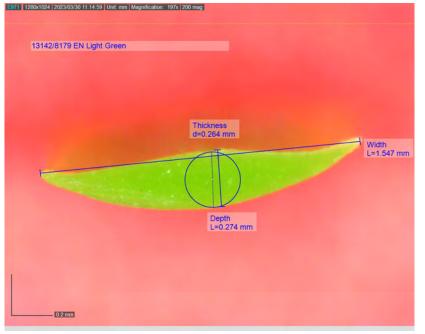





Performance Infill - picture






#### Cross-section Yarn 1







#### Cross-section Yarn 2



